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Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling,
whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to
bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes
unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become
transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a
unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining
whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies
continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling
transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft
transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random
~noise! and fixed~mismatch! perturbations are considered. Results of numerical experiments testing our theo-
retical predictions are presented.
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I. INTRODUCTION

In this paper we will be concerned with dynamical sy
tems that contain an invariant manifold@1# embedded in their
phase space and for which there exists a chaotic attract
the invariant manifold. Such systems are common in a v
ety of physical situations, and they display interesting d
namical behaviors. Types of such dynamical behavior
clude on-off intermittency@2#, riddled basins of attraction
@3#, and bubbling@4–8#. Examples of systems having invar
ant manifolds include systems with spatial symmetry@9#,
predator-prey models@10#, magnetic dynamos@11#, and syn-
chronized chaotic oscillators@12#. The subject of this pape
is the transition to bubbling. Following@4#, we introduce a
normal parameter—a parameter whose variation affects
system dynamics off the invariant manifold but leaves
dynamics within the invariant manifold unchanged. For e
ample, in the case of synchronization of two coupled cha
oscillators@as in Eqs.~1!#, the coupling strength is the no
mal parameter. The bubbling transition occurs when, a
normal parameter is varied, a periodic orbit embedded wit
the chaotic attractor first becomes unstable to perturbat
transverse to the invariant surface@13#. Before the transition,
all periodic orbits in the chaotic attractor are transvers
stable. Beyond the bubbling transition, if the system is p
turbed in a direction transverse to the invariant manifo
orbits that come close to the transversely unstable peri
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orbits are repelled and move away from the invariant ma
fold. If there is no other attractor off the invariant manifol
the orbit returns, and, assuming that the perturbations c
tinue, this process repeats, producing intermittent bu
away from the invariant manifold. If, on the other hand, the
is another attractor not on the invariant manifold, orbits i
tially repelled from the periodic orbit on the invariant man
fold may go to that attractor and never return. For defini
ness, the following discussion will not consider the ca
where there is another attractor not on the invariant ma
fold, although later on in the paper~Sec. VII! we indicate
how our results carry over to this case.

We consider the dependence of bursting on two para
eters: the normal parameter and the size of perturbat
transverse to the invariant manifold. These perturbatio
which we assume to be small, may be random~noise! or
fixed ~as in the case of coupled oscillators when there may
a slight mismatch between the two oscillators!. For a given
fixed value of the normal parameter beyond the bubbl
transition, as the size of the perturbations goes to zero,
typical size of bursts remains finite. Thus we can defin
maximum burst amplitude as a function of the normal p
rameter as the maximum size of bursts in the limit as
perturbation size goes to zero.

We distinguish between two types of bubbling transitio
soft and hard. When a soft bubbling transition occurs,
maximum burst amplitude increases continuously from z
as the value of the system’s normal parameter goes thro
its critical value. When a hard transition occurs, the ma
mum burst amplitude increases discontinuously from zero
a finite value at the bifurcation.
©2003 The American Physical Society04-1
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In this paper we investigate the transition to bubbling
the normal parameter of the system goes through its crit
value and find the conditions on the other parameters of
system leading to soft or hard transitions. We present res
for the dependence of the maximum burst amplitude on
normal parameter for a soft transition and the dependenc
the average interburst time on the normal parameter and
size of the perturbations for both hard and soft transitions
previously mentioned, the bubbling transition is marked
the loss of transverse stability by a periodic orbit of the c
otic attractor in the invariant manifold. In the presence of
invariant manifold, there are three ways by which such a l
of transverse stability can occur: the eigenvalue of the tra
verse map can increase through~i! 11 or ~ii ! 21 or ~iii ! be
complex and increase through the unit circle. These th
ways generically correspond to~i! a pitchfork or transcritical
bifurcation, ~ii ! a period-doubling bifurcation, and~iii ! a
Hopf bifurcation@14#. In @7# and@8# the behavior of a system
undergoing a bubbling transition associated with a pitchf
and transcritical bifurcation@case~i!# was studied, and re
sults for the average interburst time and maximum burst
plitude were derived. In@15# the stability of low period orbits
and the transition to bubbling due to the three generic ty
of bifurcations were observed, and conditions determin
whether the transition is hard or soft were derived for a s
tem of coupled Ro¨ssler attractors. The bifurcation scenari
in case~i! were explored further in@16,17#, while period-
doubling induced bubbling@case ~ii !# was observed in
@18,19#. In @17# and@19#, the effect of both fixed and random
perturbations on the average interburst time and maxim
burst amplitude was considered. Our results for case~ii ! in
Sec. IV are consistent with the scaling results in@17,19# for
average interburst time as a function of perturbation s
however, we focus instead on the dependence on the no
parameter and on those scaling regions for which burstin
dominated by either the normal parameter or the rand
term.

In our paper we present a unified treatment covering
generic types of bubbling bifurcation. The contributions
the present paper are as follows:~i! We derive theoretically
the conditions for hard and soft bubbling transitions for th
generic types of bubbling bifurcation in terms of the coe
cients of the canonical forms;~ii ! we derive theoretically the
scaling of the maximum burst amplitude and average in
burst time with the normal parameter, and, in the case
interburst time, the size of perturbations transverse to
invariant manifold;~iii ! we verify our predicted scalings b
the results of numerical experiments. We present analyse
both mismatch-induced and noise-induced bubbling, but
pay particular attention to the case of noise-induced b
bling, where we use the Fokker-Planck diffusion approxim
tion to obtain the interburst time scaling results. Our deri
tions are based on model systems, where we use cano
forms of the bifurcations to represent the transverse dyn
ics.

As a specific example of a system that our analysis m
be applied to, consider the general case of synchronizatio
two coupled oscillators, as described by the following syst
of equations:
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dz1

dt
5F1~z1!1kf1~z12z2!, ~1a!

dz2

dt
5F2~z1!1kf2~z22z1!, ~1b!

where f1,2 and F1,2 are smooth functions,f1(0)5f2(0)50,
andk is a coupling constant. For this situationk is the normal
parameter in the system. First consider the case where
oscillators are identical,F1(z)5F2(z)5F(z). The synchro-
nized statez15z2 represents an invariant surface embedd
in the full (z1 ,z2) phase space. Letx5(z11z2)/2 and y
5(z12z2)/2. In these coordinates~x,y! the dynamics inx
with y50 represents the dynamics along the invariant ma
fold. We ask, what is the effect of small perturbations to t
system caused by noise or mismatch on the dynamics in
y direction ~i.e., transverse to the invariant manifold!? In
particular, what is the effect of a small noise of orderr added
to the right-hand sides of Eqs.~1! or of a small deviation
such that the two oscillators are not identical~mismatch!,
iF12F2i;q!1? These perturbations will typically destro
the invariance of the invariant manifoldz15z2 . In what fol-
lows we consider discrete time systems, possibly obtai
via a surface of section from a continuous time system@e.g.,
Eqs. ~1!#. If the synchronized statez15z2 without noise or
mismatch is chaotic, we can model the dynamics using
following model systems.

II. MODEL SYSTEMS

To simplify our analysis we assume that the chaotic d
namics on the invariant manifold is given byxn1152xn mod
1 and that the periodic orbit that becomes transversely
stable at the bubbling bifurcation is the fixed pointx50.
More generally, the bifurcation may occur at a higher per
orbit, but this orbit will typically have low period@12#. Our
results below depend on the dynamics within and transve
to the invariant manifold in the following ways. Within th
invariant manifold, the results depend only on the larg
Lyapunov exponent of the bifurcating orbit, which we deno
by hi . Transverse to the invariant manifold, our results d
pend on the local dynamics in the ‘‘center manifold’’ corr
sponding to the eigenvalue~s! on the unit circle at the bifur-
cation, which we represent by a complex variablez in the
case of a Hopf bifurcation and by a real variabley for the
other bifurcations. We include only the quadratic and cu
terms iny andz that are necessary to determine thenormal
form for the bifurcation—that is, to describe the bifurcatio
to the lowest order. For details on center manifolds and n
mal forms, see@20#.

Model for pitchfork and transcritical bifurcations. For the
case of a transverse pitchfork or transcritical bifurcation
consider a model system of the form@8#:

xn1152xn mod 1, ~2a!

yn115@cos~2pxn!1p#yn1ayn
s1q1rnn for uyu,1,

~2b!
4-2
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wherexn andyn are real,p is the bifurcation parameter with
p.0 (p,0) above~below! the bubbling transition, andq is
the mismatch parameter. Thernn term represents noise in th
system with magnituder .0. We assume thatnn are random
numbers uniformly distributed on@21,1#. The termays with
s52 or 3 in Eq.~2b! represents the lowest ordery nonlin-
earity of the system at the fixed pointx50. We assume tha
upu!1, uqu!1, andur u!1 but uau5O(1). Thedynamics inx
models the chaotic dynamics in the invariant manifold a
the dynamics iny models the dynamics transverse to t
invariant manifold. In this and the following models th
equation for they dynamics models the local evolution of th
system close to the invariant manifold. Foruyu.1, it is pre-
sumed that Eq.~2b! does not apply and that there is a co
fining nonlinearity that sends the orbit back to the reg
uyu,1 ~in particular, there is no attractor inuyu.1). Consid-
ering q50 andr 50, the linearizedy dynamics at the fixed
point x50 is governed byyn115(11p)yn ; thus, asp in-
creases through zero,dyn11 /dyn increases through11, cor-
responding to a pitchfork or transcritical bifurcation in th
transverse dynamics at thex50 fixed point. Symmetric cou-
pling (f15f2) in Eq. ~1! is modeled bys53, and asymmet-
ric coupling (f1Þf2) is modeled bys52. For the symmetric
case, the symmetryy→2y rules out the possibility of ay2

term in Eq. ~2b!. The termq represents a small mismatc
F12F2 . In the absence of noise and mismatch we have
invariant liney50, on which there exists a chaotic invaria
set generated by Eq.~1a!. The stability of this line is gov-
erned by the coefficient ofyn in the first term on the right
hand side of Eq.~3b!. Since cos(2pxn) is maximum atx
50, the period-1 orbit at (x,y)5(0,0) with q50 andr 50
becomes transversely unstable asp increases through zero
and the corresponding bifurcation is a transcritical bifur
tion if s52 ~asymmetric coupling! or a pitchfork bifurcation
if s53 ~symmetric coupling!. In terms of Eqs.~1!, p is
analogous to (kc2k), wherekc is the critical bubbling value
of the coupling strengthk. We refer top50 as the critical
parameter value. Because the local structure of a pitchfor
transcritical bifurcation~e.g., subcritical or supercritical! is
determined by the lowest order nonzero nonlinear term,
neglect all terms of order higher thanys. Note that the chaos
in the invariant manifold (y50) is unaffected byp @Eq. ~2a!
is independent ofp#.

Model for period-doubling bifurcations. For the period-
doubling case we consider a model system of the form

xn1152xn mod 1, ~3a!

yn1152@cos~2pxn!1p#yn1ayn
21byn

31q1rnn,

for uyu,1, ~3b!

wherexn andyn are real,p is the bifurcation parameter with
p.0 (p,0) above~below! the bubbling transition, anda, b,
q, and r .0 are parameters of the system whose values
fine the type of transition occurring asp goes through 0.
Again we assume thatupu,uqu,ur u!1 and max(uau,ubu)5O(1).
The nn are random numbers uniformly distributed on@21,
1#. Consideringq50 andr 50, the linearizedy dynamics at
thex50 fixed point of Eq.~3a! is yn1152(11p)yn which
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becomes unstable asp increases through zero wit
dyn11 /dyn decreasing through21, corresponding to a
period-doubling bifurcation. In the case of coupled oscil
tors ~1! with symmetric coupling (f15f2), a50, but with
asymmetric coupling (f1Þf2), both quadratic and cubic
terms may be present. Because the local structure o
period-doubling bifurcation is determined by the terms
order up to 3, we neglect all terms of order higher thany3,
and, since both the quadratic and cubic terms are import
we do not treat the cases of symmetric and asymmetric c
pling separately.

Model for Hopf bifurcations. In the case where the trans
verse bifurcation of the periodic orbit is a Hopf bifurcatio
we employ the following model:

xn1152xn mod 1, ~4a!

zn115@cos~2pxn!1p#eiuzn1azn
21bznzn* 1c~zn* !2

1duznu2zn1q1rnn for uzu,1, ~4b!

wherezn is complex andzn* is the complex conjugate ofzn .
As in the previous cases,p and r are small real parameters
The quantitiesa, b, c, d, q, andr are complex parameters o
the system withuqu,ur u!1 andumax(a,b,c,d)u5O(1). Thenn

are complex random numbers uniformly distributed with
the unit circle. In this model complexz models the two-
dimensional dynamics transverse to the invariant manifo
while the variablex models the dynamics along the invaria
manifold. Forq50 andr 50, the quantitydzn11 /dzn evalu-
ated at the fixed pointx50 has its magnitude increas
through unity asp increases through zero. Foru/2p irrational
this corresponds to a Hopf bifurcation. This model includ
the above mentioned pitchfork or transcritical and perio
doubling bubbling bifurcations as special cases withu50
being the pitchfork or transcritical case andu5p being the
period-doubling case. Although it is possible to get all resu
for period-doubling and pitchfork or transcritical bifurcation
from the model~4!, we will use the models~2! and ~3! for
these special cases to simplify the analysis. The misma
parameterq again breaks the invariance of the linez50
10i . We included all possible terms quadratic inz. In pre-
vious work on the Hopf bifurcation it has been shown th
out of all possible terms cubic inz only the term proportional
to uznu2zn is relevant to the local structure of the bifurcatio
@22#.

The results we obtain for models~2!, ~3!, and ~4! are
given in Tables I–III. We treat the cases of mismatchq
Þ0) and noise (rÞ0) separately; when bothq and r are
nonzero, the average interburst time will scale as the sma
of the two expressions given. We claim that these results
be applied to any generic situation exhibiting a bubbli
transition. For the case of the pitchfork or transcritical bifu
cation this claim has been confirmed experimentally~see
@8#!.
4-3



/2

ALEKSEY V. ZIMIN, BRIAN R. HUNT, AND EDWARD OTT PHYSICAL REVIEW E 67, 016204 ~2003!
TABLE I. Summary of results for the pitchfork and transcritical bifurcations using the model system~2!,
with D5(1/2)r 2 Var(n).

Symmetric coupling
(s53)

Asymmetric coupling
(s52)

Condition for hard transition a.0 qa.0 or rÞ0

Condition for soft transition a,0 qa,0 andr 50

Maximum burst amplitude~soft transition! D.(p/uau)1/2 D.p/uau
for max(uqu,uru)2/3!p!1 for q1/2!p!1

Average interburst time~mismatch! ln t;(hi /p)ln@p3/2/uaq2u1/2# ln t;(hi /p)ln@p2/uaqu#
for uqu2/3!p!1 for uqu1/2!p!1

Average interburst time~noise! ln t;(hi/2p)ln@p2/uaDu# ln t;(hi/2p)ln@p3/(a2D)#
for r 2/3!p!1 for r 1/2!p!1

ln t;hi
1/2uaD)21/32

1
4 p(aD)22/3 ln t;hi

1/2(a2D)1/42
1
4 p(a2D)21

for p!r 2/3!1 for p!r 1/2!1
et
f

io

-

e

h
dy

ies
III. PITCHFORK AND TRANSCRITICAL BIFURCATIONS

A. Maximum burst amplitude and stability

In this subsection we review the derivation of the theor
ical result for the maximum burst amplitude for the case o
pitchfork or transcritical bubbling bifurcation in the map~2!.
We derive the results for the noiseless caser 50 first. This
derivation serves as a model for the treatments of the per
doubling and Hopf cases, and closely follows@7,8#. In the
case of symmetric coupling (s53) we will show that we
have a soft bubbling transition ifa,0 and a hard bubbling
transition if a.0. In the case of asymmetric coupling (s
52), we will show thatqa.0 corresponds to a hard tran
sition, andqa,0 corresponds to a soft transition.

For small positivep, the factor@p1cos(2pxn)# is greater
than 1 only in a small region near the fixed pointx50 of Eq.
~1a! ~sincex is taken modulo 1, we consider values ofx near
1 to be near 0!. Thus a burst can only be initiated when th
chaoticx orbit comes near enough tox50 that it remains
there long enough fory to burst. The burst ends whenx
moves away from the fixed point. In order to compute t
maximum possible burst amplitude, we first consider the
01620
-
a

d-

e
-
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yn112yn5pyn1ayn
s1q. ~5!

Assume for definiteness thatq.0. Then, in the case of a
soft transition (a,0), if x50 then y increases but is
bounded from above by the positive solution of

pD1aDs1q50. ~6!

Since the maximum value thaty can reach isD, this value
represents the maximum burst amplitude for all trajector
that start neary50. SinceaDs is the only negative term on
the left-hand side of Eq.~6!, the solution forD can be esti-
mated byDs.max(pD/uau,uq/au) which yields

D.max„~p/uau!1/~s21!,uq/au1/s
…. ~7!

~In this and further equations we use. to denote ‘‘approxi-
mately equal’’ and; to denote ‘‘equal up to a constant.’’! In
particular, whenp@q(s21)/s, we haveD.up/au1/(s21).
TABLE II. Summary of results for the period-doubling bifurcation using the model system~3!. We use the
notationp̂5p2aq andD5(1/2)r 2 Var(n).

Condition for hard transition a21b,0

Condition for soft transition a21b.0

Maximum burst amplitude~soft transition! D.Ap̂/(a21b)
for max(uqu2,r2/3)! p̂!1

Average interburst time~mismatch! ln t;(hi/2p̂)ln@p̂/(ua21buq2)#
for uqu2! p̂!1

Average interburst time~noise! ln t;(hi/2p)ln@p2/(ua21buD)#
for r 2/3!p!1

ln t;hi
1/2@(a21b)D#21/32

1
4 p@(a21b)D#22/3

for p!r 2/3!1
4-4
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TABLE III. Summary of results for the Hopf bifurcation@ f 1 is defined in Eq. ~42!, and D
5(1/2)r 2 Var(n)].

Condition for hard transition Re$@(122eiu)e22iu/(12eiu)#ab%1(1/2)bb* 1cc*
2Re(de2iu),0

Condition for soft transition Re$@(122eiu)e22iu/12eiu#ab%1(1/2)bb* 1cc*
2Re(de2iu).0

Maximum burst amplitude~soft transition! D.Ap/ f 1

for max(uqu,r2/3)!p!1

Average interburst time~mismatch! ln t;(hi/2p)lnzp(12eiu)2/u f 1qu2z
for uqu!p!1

Average interburst time~noise! ln t5(hi/2p)ln@p2/uf1Du)
for r 2/3!p!1

ln t5hi
1/2( f 1D)21/32

1
4 p( f 1D)22/3

for p!r 2/3!1
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Whenq,0, a soft transition will occur if and only if Eq
~6! has a negative rootD. Thus if s52 we needa.0 for a
soft transition, while ifs53 we needa,0. In these cases
the magnitude of the negative rootD is given by the right
side of Eq.~7!. In the case of noise, for asymmetric couplin
(s52) the transition is always hard; because the noise
take either sign, there will be both large and small bursts.
symmetric coupling (s53), we still have a soft transition i
a,0 and a hard transition ifa.0. In the case of a sof
transition, by arguments similar to the one above, we h
D.(p/uau)1/(s21) when r 2/3!p!1.

B. Average interburst time: Mismatch

In what follows we derive results for the average inte
burst time for soft and hard bubbling transitions. We fi
consider the effect of mismatch in the noiseless caser 50.
The analysis in the previous section shows that the nonlin
term ays is insignificant when uyu!yc

;max„(p/uau)1/(s21),(q/uau)1/s
…, while wheny grows close

to yc , the nonlinear term will either confine the burst~soft
transition! or rapidly accelerate the orbit toy5O(1) ~hard
transition!. Either way, we can estimate the interburst time
the time for uyu to reachyc in the absence of the nonlinea
term.

Assuming thatx stays at its fixed pointx50, the nth
iterateyn for n.0 in the absence of the nonlinearity can
written as

yn5 (
i 50

n21

~11p! iq5
@~11p!n21#q

p
. ~8!

Hence we can compute the timen̄ for an initial point
(x0 ,y0)5(0,0) to reachyc by settingyn̄5yc which yields

n̄;
1

p
lnS pyc

uqu D . ~9!

This expression is valid forpyc@q, which corresponds to
the casep@q(s21)/s andyc;(p/uau)1/(s21). To estimate the
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average interburst timet we note that, in order to initiate a
burst, an orbit must come within« of x50 where« is suffi-
ciently small that the orbit remains nearx50 for at leastn̄
iterates. Since the invariant density generated by Eq.~3! is
uniform in x, we have that the average timet between bursts
is given byt215«. We express« in terms ofn̄ as follows.
For small initial x0 nearx50, the subsequent iterates gro
exponentially asx0 exp(hin) wherehi5 ln 2 is the Lyapunov
exponent of Eq.~1a!. Requiring that« exp(hin̄)&d, whered
,1 is O(1), weobtain the desired estimate of« and hence
of the average interburst time in terms ofn̄:

ln t; ln «215hin̄. ~10!

Substitutingn̄ from Eq.~9! into Eq.~10! we obtain the result
for the scaling of lnt,

ln t;
hi

p
lnS pyc

uqu D . ~11!

This result is recorded in Table I with the appropriate va
of yc substituted.

C. Average interburst time: Noise

We now derive the scaling for the average interburst ti
in the presence of small bounded noise in the map~2!. We
isolate the effect of noise by takingq50. We consider they
dynamics in this case to be a drift-diffusion problem wi
drift proportional to terms linear iny, i.e., py, and diffusion
due to noisernn . We split the problem into two parts: Firs
we consider drift-dominated bubbling corresponding to
case where the effect of thepy drift is dominant in develop-
ing a burst, and then we consider noise-dominated burs
corresponding to the case where the effect of the noise t
rnn is dominant. For both cases we will derive asympto
upper bounds on the mean interburst time, and our final
sult for the interburst time will be the minimum of these tw
bounds. We also derive a relation betweenp and r that de-
termines what kind of bursting is dominant and thus wh
scaling applies.
4-5
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First we consider noise-dominated bursting. In this c
Eq. ~2b! with x50 can be approximated as a random wa
process with small drift. We characterize this process w
two quantities: the drift per iteratepyn and the diffusion
coefficientD5(1/2)r 2 Var(n). Here Var~n! is the variance of
the random variablenn ~mean value ofnn

2). For our numeri-
cal experimentsnn is uniformly distributed in@21,1#, in
which case Var(n)51/3.

As in the previous section, we assume that there is a c
cal valueyc such that we can estimate the time to produc
burst as the time foruyu to reachyc in the absence of the
nonlinear termays. We setyc such that the size of the non
linear term is equal to the typical size of the noise,uauyc

s

;AD. Hence we have

yc;UAD

a
U1/s

. ~12!

By definingyc in this manner, we ensure that the nonli
ear term dominates the noise foruyu@yc . However, it is
possible that the nonlinear term becomes significant foruyu
!yc because it behaves coherently from one iterate to
next while the noise term may not. Thus by ignoring t
nonlinear term foruyu,yc we may be overestimating th
interburst time. However, our estimate remains an up
bound on the interburst time, and our simulations show t
this upper bound correctly describes the actual interb
time scaling in the noise-dominated case. The reason for
is that a burst most often occurs when the noise does be
coherently; we discuss this point further in Sec. VI.

The average interburst timet is the inverse of the prob
ability per unit time of initiating a burst. By initiating a burs
we mean thatx maps close to 0~having not been close on th
previous iteration!, and that a burst will happen during th
time x remains close to 0. In the previous section, we co
say exactly how many iterations (n̄) x needed to remain
close to 0 in order for a burst to occur, but in the nois
dominated case we cannot. Instead, we proceed as foll
Let Q(n) be the probability thatuyu has remained in the rang
uyu,yc up to timen. The probability thatuyu exceedsyc for
some time at or before timen is 12Q(n). As in the previous
section, the probability thatx will map close enough to 0 to
stay there for at leastn iterations is proportional toe2hin.
Thus the probability thatx remains close to zero for exactl
n iterations is proportional toe2hin2e2hi(n11). Hence 1/t,
the probability per unit time of initiating a burst, satisfies

1

t
. (

n50

`

$~e2hin2e2hi~n11!!@12Q~n!#%. ~13!

To estimate Eq.~13! we utilize a continuous time approx
mation for they dynamics, with the continuous variablet
replacingn. Equation~13! becomes

1

t
.hi E

0

`

e2hit@12Q~ t !#dt512hi E
0

`

e2hitQ~ t !dt.

~14!
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The continuous time approximation of Eq.~13! requires that
hi be small. We note, however, that Eq.~14! is valid as an
order of magnitude estimate even whenhi is of order 1.
Sincet@1, and since we will use Eq.~14! only to estimate
the logarithm oft, an order of magnitude estimate is suf
cient. To estimateQ(t), we consider the time evolution o
the probability distribution function fory, P(y,t) for the
situation in which an orbit starts aty50 at timet50 and is
considered to burst whenuyu exceedsyc . Accordingly, we
assume thatP(y,0)5d(y) and thatP(y,t)50 for uyu>yc ,
so thatP(y,t) for uyu,yc represents the probability distribu
tion function for trajectories that have not yet reacheduyu
5yc at time t. Thus

Q~ t !5E
2yc

yc
P~y,t !dy ~15!

and

ln t;2 lnH 12hi E
2yc

yc E
0

`

e2hitP~y,t !dt dyJ . ~16!

We obtain the probability distribution functionP(y,t) using
the Fokker-Planck diffusion approximation. Ignoring th
nonlinear termsays, the evolution of the probability distri-
bution functionP(y,t) is given by the solution of the follow-
ing drift-diffusion equation:

D
]2P

]y2 5
]P

]t
1

]

]y
~pyP!, ~17!

wherepy andD are the above mentioned drift velocity an
average diffusion per iterate parameters. Recall that the
tial condition isP(y,0)5d(y) and the boundary condition
areP(6yc ,t)50. We solve this equation by first performin
a Laplace transform with respect to the time variablet,

P̄~y,s!5E
0

`

e2stP~y,t !dt. ~18!

Note that this integral is the same as the integration ovedt
on the right-hand side of Eq.~16! with s replaced byhi .
Thus

ln t;2 lnH 12hi E
2yc

yc
P̄~y,hi!dyJ . ~19!

The differential equation forP̄(y,s) is

D
]2P̄

]y22py
] P̄

]y
2~p1s!P̄52d~y!, ~20!

with boundary conditionsP̄(6yc ,s)50. The exact solution
of this equation satisfying the boundary conditions can
expressed in terms of parabolic cylinder functions@21#, and
is rather cumbersome. For smallp we have developed a per
turbation expansion approach that gives the lowest orderp
behavior. We first find the solution to Eq.~20! for p50 and
call it P̄0(y,s). Then we representP̄(y,s) in the form
4-6
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P̄(y,s)5 P̄0(y,s)1pP̄1(y,s)1O(p2), substitute this form
into Eq. ~20! and solve forP̄1(y,s) subject toP̄1(6yc ,s)
50. Thus we obtain the first order inp correction to the
solution~see the Appendix!. Writing t in terms ofP̄(y,s) we
obtain

ln t;2 lnH 12hi E
2yc

yc
@ P̄0~y,hi!1pP̄1~y,hi!#dyJ 1O~1!.

~21!

Performing the integral above, and making the appropr
approximations~see the Appendix!, we obtain the scaling o
ln t with p andD:

ln t;ycAhi /D2
pyc

2

4D
. ~22!

This scaling is valid as long as the second term is sm
compared to the first one; that is, whenps/(s21)/ur u!1.
Upon substitution of the expression~12! for yc into Eq.~22!,
we obtain our final expression for the scaling of lnt,

ln t;Ahi /DUAD

a
U1/s

2
p

4D
UAD

a
U2/s

. ~23!

This equation is also given in Table I.
To numerically test the scaling results, we iterated m

~2! starting aty50 and a typical~irrational! value ofx with
nn distributed uniformly on@21,1#, and measured the ave
age interburst time for different values of the parameterp
andr. Figure 1 compares the derived scaling~solid line! with
the results from the numerical experiment~diamonds!, where
p50 andr is varied. In Fig. 2, we varyp, keepingr fixed.

FIG. 1. This plot shows lnt vs D21/3 for bubbling induced by a
pitchfork bifurcation with noise in noise-dominated case,p!r 2/3

!1. D is the diffusion coefficient,D5(1/2)r 2 Var(n). Parameter
values area51, p50, s53, andr 50.1, . . . ,0.2. The experimenta
data are plotted as diamonds. The solid curve has the slopeAhi

5Aln 2 predicted by scaling given in Table I.
01620
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We now consider drift-dominated bursting. In this cas
we again claim that a burst occurs wheny becomes greate
than a critical valueyc beyond which the nonlinear term
dominates. As an upper bound for the critical valueyc we
use the same value for the burst threshold as we used in
case of mismatch, i.e.,yc5(p/uau)(s21)21

. If y;yc the non-
linear term either confines the orbit~for s53 anda,0), or
else rapidly accelerates the orbit toy;O(1). As in themis-
match case we first estimate the average number of iter
required fory to reachyc starting at a valuey050, ignoring
the nonlinear term and assuming thatx stays at 0~unlike for
noise-dominated bursting, the number of iterates does
depend strongly on whether the noise behaves coheren!.
The nth iterate then can be written as

yn5r (
i 50

n21

~11p! in i . ~24!

Sincen i are random variables with mean zero, we dedu
that

Var~yn!5
2@~11p!2n21#

p~21p!
D,

whereD5(1/2)r 2Var(n) is the previously defined averag
diffusion per iterate. Forp!1, we can simplify the expres
sion for the variance Var(yn).(D/p)@(11p)2n21#. Now
we set the burst condition to Var(yn̄)5yc

2, where n̄ is the
average number of iterates of the map required on ave
for yn to become equal to or greater thanyc ,

D

p
@~11p!2n̄21#.yc

2. ~25!

Solving the above equation forn̄, and dropping higher orde
p andD terms, we obtain

FIG. 2. This plot shows lnt vs p for bubbling induced by pitch-
fork bifurcation with noise in the noise-dominated case,p!r 2/3

!1. Parameter values area52, r 50.08, ands53. The experimen-
tal data are plotted as diamonds. The solid curve has slope215.1
predicted by scaling given in Table I.
4-7
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n̄.
1

2p
lnS pyc

2

D D . ~26!

Notice that, if the noise behaved coherently~say nn51 for
all n!, the result forn̄ would differ only in thatp would be
replaced byp2 inside the logarithm@one can see this by
replacinguqu with r in Eq. ~9!#. Using lnt;hin̄, we obtain

ln t;
hi

2p
lnS pyc

2

D D . ~27!

This is the final scaling result given in the Table I.
We have numerically tested our theoretical result for dr

dominated bubbling by iterating the map~2! starting aty
50 and a typical~irrational! value of x with nn distributed
uniformly on @21,1#, and measuring the average interbu
time. The parameterp was varied with the other paramet
values set ata52, s53, andr 50.005. In Fig. 3 we plot lnt
from the numerical experiments vsn̄(p) given by Eq.~26!.
The results of the numerical experiments are shown as
monds. The solid curve has a slope ofhi5 ln 2 predicted by
the scaling given in Table I.

Now we consider the condition onp andr that determines
what kind of bursting prevails, and hence which scaling
plies. To do that, we set the two relations Eq.~23! and Eq.
~27! equal in the lowest significant order:

Ahi /DUAD

a
U1/s

.
hi

p
. ~28!

We arrive at the conclusion that the two scalings agree w
ps/(s21)/ur u.O(1). Thus noise-dominated bubbling pre
vails whenps/(s21)/ur u!1 and the drift-dominated bubblin
prevails if ps/(s21)/ur u@1. This result is consistent with th
order-of-magnitude estimate presented in Sec. VI.

FIG. 3. This plot shows lnt vs n̄(p), wheren̄(p) is given by
Eq. ~26!, for bubbling induced by a pitchfork bifurcation with nois
in the drift-dominated case,r 2/3!p!1. Parameter values area
52, s53, andr 50.005. The experimental data are plotted as d
monds. The solid curve has slope ln 2 predicted by scaling give
Table I.
01620
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IV. PERIOD-DOUBLING BIFURCATION

A. Maximum burst amplitude and stability

In this section we present a derivation of theoretical
sults and results of numerical experiments for the peri
doubling bifurcation induced bubbling transition. We sta
with the case of no noise:r 50 in our model system~3!.
Consider an orbit starting at (x,y)5(0,0) for the map~2!.
Note that~0, 0! is a fixed point of the map forq50. The
subsequent iterates obey the relation

yn122yn52~p2aq!yn22~a21b!yn
32~p2aq!q

1O~py2,p2y,q2y,qy2,q3,y4,pqy!. ~29!

Making the change of variablesp̂5p2aq, we have

yn122yn52p̂yn22~a21b!yn
32 p̂q

1O~ p̂y2,p̂2y,q2y,q3,qy2,y4,p̂qy!. ~30!

Of course, ifp@uaqu, thenp̂.p, but for smaller values ofp
the distinction betweenp̂ andp will be significant. We pro-
ceed by analyzing Eq.~29! in the same way we treated Eq
~5!. Setting yn122yn50, we obtain the equation for th
maximum burst amplitudeD:

2p̂D22~a21b!D32 p̂q50. ~31!

As for the derivation of Eq.~7! in the cases53, we con-
clude that fora21b.0,

D.maxH S p̂

a21bD 1/2

,S p̂uqu
a21bD 1/3J . ~32!

In particular, if uqu2! p̂!1, then p̂1/2@( p̂uqu)1/3 and we
have

D.Ap̂/„a21b…. ~33!

@A result that accounts for the effect of mismatch more
curately can be obtained by solving Eq.~31! for D and taking
the appropriate root.# Thus forx50 anda21b.0, the linear
exponential increase ofy ~namely, yn122yn.2p̂yn) is
eventually arrested by nonlinearity, andy reaches a maxi-
mum,y5D, that is small,O( p̂1/2), for small p̂, correspond-
ing to a soft transition. Fora21b,0, D does not exist, and
when uyu;u p̂/(a21b)u1/2 the nonlinearity accelerates th
growth of y, leading to a hard transition.

We now obtain the conditions on the parameters that w
determine whether the transition is soft or hard. The type
transition is determined by the sign of the expression un
the square root in the denominator of Eq.~33!, positive cor-
responding to a soft transition and negative correspondin
a hard transition. Thus we have that the transition is har
a21b,0 and soft if a21b.0. We have tested the abov
results in numerical experiments on Eq.~3!. For b524 the
transition is hard if22,a,2. Figure 4~a! illustrates the soft
transition if we iterate Eq.~3! starting at (x0 ,y0)5(0,0). The

-
in
4-8
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data from numerical experiments is plotted as dots. Fig
4~b! shows a bursting time series for a hard bubbling tran
tion.

In the case of noise, we have a soft transition if (a21b)
.0 and a hard transition if (a21b),0. In the case of a sof
transition, by arguments similar to the one above, we h
D.Ap̂/(a21b) when r 2/3!p!1.

B. Average interburst time: Mismatch

To begin the analysis, we first note from Eq.~3! that the
average magnitude ofy between bursts is of orderq. We
again consider the second iterate of the map~3b!, for x50
with terms of higher order inp and q dropped, resulting in
Eq. ~29!.

Equation~30! shows that in the case of a soft transitio
the nonlinearity limits the increase ofuyu at the value of
Ap̂/ua21bu. Denote this value ofy as the critical valueyc .
In the case of a hard transition, the nonlinear terms quic
pushy to uyu;O(1) as soon asuyu grows to a value of the
orderyc . As mentioned earlier, at the beginning of a bursy
is of orderq. The termp̂q only determines the direction o
the burst and therefore it is rather insignificant, being at m
of the order of the 2p̂y term. Thus for simplicity we ignore it
and assume that, whenx comes close to zero,y.q. Then
yn.(112p̂)n/2q and settingyn̄5yc we obtain the following
expression for the number of iteratesn̄ required for uyu to
reachyc ~i.e., to initiate a burst!:

n̄.
1

p̂
lnS yc

uqu D , ~34!

for uqu2! p̂!1. From Eqs.~9! and ~34!, we obtain the de-
sired estimate for the average interburst time,

ln t;hin̄5
hi

p̂
lnS yc

uqu D , ~35!

which is also given in Table II.
We have obtained the scaling oft with p numerically by

starting the map~3! at a random initialx andy50 and mea-
suring the average number of iterates that it took foruyu to

FIG. 4. Plot~a! shows the maximum burst amplitudeD vs p for
the soft transition in period-doubling induced bubbling, map~3!.
The experimental data are plotted as dots. The solid curve is
theoretical result from Eq.~33!. Plot ~b! shows the bursting time
series for hard transition atp50.27. Parameter values areq
50.003,a521.9 ~a!, a522.3, ~b! andb524.
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become greater than 1. For the parameters of Fig. 5 the t
sition is hard sincea21b,0. The experimental data ar
plotted as diamonds. Figure 5 presents these data as lnt vs
n̄(p) where n̄(p) is obtained from Eq.~34!. The solid line
has the slope ofhi5 ln 2 predicted by Eq.~35! and is consis-
tent with the data.

C. Average interburst time: Noise

In this section we deduce the expression for average
terburst time for period-doubling-induced bubbling. Simil
to the previous section we consider every other iterate of
~3b! in the presence of noise and the absence of mism
(q50) with x at its fixed pointx50:

yn122yn.2pyn22~a21b!yn
31r ~nn112nn!. ~36!

We redefine the noise variable (nn112nn) as n̂n , where
Var(n̂n)52 Var(nn). With n̂n , Eq. ~36! is equivalent to the
case of noise in a pitchfork bifurcation (s53). The variance
of n̂n is double the variance ofnn , but since we are consid
ering every other iterate ofyn , these two effects cancel in th
computation of the average interburst time. Thus all res
derived in Sec. III C apply, including the scaling ranges,
we use the derived expressions for average interburst
for s53 with a21b as the coefficient of the cubic term. Th
results for period-doubling bifurcation induced bubbling a
summarized in Table II.

To test the scaling results we iterated map~3! starting at a
typical irrationalx and y50 with nn distributed uniformly
on @21,1# and measured the average interburst time for d
ferent values ofp, keeping the noise magnituder fixed. Fig-
ure 6 compares the derived scaling result with the exp
mental results. We plot lnt for different values ofp keeping
other parameters fixed. Numerical data are plotted as
monds.

he

FIG. 5. This plot shows lnt vs n̄(p), wheren̄(p) is given by
Eq. ~34!, for bubbling induced by a period-doubling bifurcatio
with asymmetry for q2!p!1. Parameter values area51, b
522, q50.008 withp varying from 0.14 to 0.22. The experimen
tal data are plotted as diamonds. The solid curve has a slope of
predicted by scaling given in Table II.
4-9
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V. HOPF BIFURCATION

A. Maximum burst amplitude and stability

Next we examine the case of a Hopf bifurcation, Eqs.~4!.
We consider an orbit starting at (x,z)5(0,010i ), and take
p50 ~i.e., we consider the map at the critical bifurcatio
point!. For the validity of the analysis below we assume th
the angleu in the exponent in front of the linear coefficient
not equal to certain special values: 0,6p/2, 62p/5,
62p/3, and 6p. The casesu50 and 6p correspond to
pitchfork or transcritical and period-doubling bifurcation
and have already been considered in Secs. III and IV.
other nonallowed angles~6p/2,62p/5,62p/3! correspond
to nongeneric cases which, unless special circumstance
ply, are not expected to occur. When the above speciu
values are excluded, it can be shown@22,23# that by means
of a coordinate transformation of the form

zn85zn1g1zn
21g2znzn* 1g3~zn* !2, ~37!

whereg1 , g2 , and g3 are complex numbers, all quadrat
terms can be eliminated from Eq.~4b! with x50, yielding

zn118 5lzn81d8uzn8u
2zn81q1rnn

1O~q2,r 2,rz8,qz8,pz82,z84!, ~38!

wherel5(11p)eiu and

d85
122l

l~l21!
ab1

l

l21
bb* 1

2l

l321
cc* 1d. ~39!

Defining z̃5z81q/(12l), and substituting into Eq.~38!
cancelsq in lowest significant order. Thus, in terms ofz̃, Eq.
~38! becomes

z̃n115l z̃n1d8uz̃nu2z̃n1rnn1O~q2,r 2,rz̃,qz̃,pz̃2,z̃4!.
~40!

FIG. 6. This plot shows lnt vs p for bubbling induced by a
period-doubling bifurcation with noise in the noise-dominated ca
p!r 2/3!1. Parameter values area51, b524, andr 50.08. The
experimental data are plotted as diamonds. The solid curve ha
slope211.5 predicted by scaling given in Table II.
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Until we consider noise in Sec. V C, we assume thar
50. Then Eq.~40! can be transformed into the followin
canonical form:

S uz̃n11u
arg~ z̃n11! D5S ~11p!uz̃nu2 f 1uz̃nu3

arg~ z̃n!1Q1 f 2uz̃nu2D1O~q2,qz̃,z̃n
4!

~41!

with f 1 , Q, and f 2 being real coefficients. Equation~41!
shows that the critical issue is the sign off 1 . A positive sign
indicates a soft transition and a negative sign indicates a h
transition. As derived in@22#, f 152Re(l*d8) at the bifurca-
tion valuel5eiu, or

f 15ReF ~122eiu!e22iu

12eiu abG1
1

2
bb* 1cc* 2Re~de2 iu!.

~42!

The sign of the above expression determines whether
transition is hard (f 1,0) or soft (f 1.0).

Next we obtain an expression for the maximum burst a
plitude for a soft transition in model~4!. We assume thatf 1
is of order 1, i.e., we are not close to the borderline betw
hard and soft transitions. Rewriting the radial part of Eq.~41!
as

uz̃n11u2uz̃nu5puz̃nu2 f 1uz̃nu31O~q2,qz̃,z̃n
4!, ~43!

we see that, as in the pitchfork case, the maximum b
amplitudeD̃ for uz̃u is

D̃.Ap/ f 1. ~44!

This relation is true ifpD5 f 1D3@max(q2,qD̃,D̃n
4). Thus the

scaling range for Eq.~44! is uqu!p!1, and, sincez5z8

1O(z8)25 z̃1O( z̃2,q), in this range we haveD.D̃
.Ap/ f 1. Since our final result does not depend on the m

,

the

FIG. 7. This plot shows the maximum burst amplitudeD vs p
for a soft transition in Hopf-bifurcation-induced bubbling. The e
perimental data are plotted as dots. The solid curve is the theore
result from Eq.~44!. Parameter values area50.1, b50, c50.1,
d51.0, u5pA5, andq50.000120.0001i .
4-10
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BIFURCATION SCENARIOS FOR BUBBLING TRANSITION PHYSICAL REVIEW E67, 016204 ~2003!
nitude ofq in the scaling range specified, the result applies
the case of noise-induced bubbling as well. Figure 7 sho
the scaling of the maximum burst amplitude withp. Experi-
mental data are plotted as dots. The solid curve is calcul
from Eq. ~44!.

In the case of noise, we have a soft transition iff 1.0 and
a hard transition iff 1,0. In the case of a soft transition, b
arguments similar to the ones in previous sections, we h
D.Ap/ f 1 when r 2/3!p!1.

B. Average interburst time: Mismatch

We now derive an expression for the average interb
time in the presence of mismatch (q.0) and no noise (r
50). Again we consider an orbit starting at (x,z)5(0,0
10i ) and use the new coordinatesz8 to eliminate the qua-
dratic terms. Note that the coefficient in front of the cub
term in the transformed coordinates is given by Eq.~39!. As
in the previous derivations~Secs. III and IV!, we make use
of the fact that, in the case of a hard transition, whenuznu
grows to the point where the nonlinear terms become sig
cant, the nonlinearity pushesuznu to O(1) rapidly. Consider
the linear terms in map~38!, zn115lzn1q1O(zn

3). We first
find the number of iterates it takes to escape starting a
Starting atz50, thenth iterate of the linearized map iszn
5@(12ln11)/(12l)#q. The nonlinear term becomes sig
nificant when, aftern̄ iterates,uzu reaches the critical value
zc5Ap/u f 1u; thus we have the equation forn̄:

U12l n̄11

12l
qU2

.
p

u f 1u
. ~45!

Solving the above equation, we findn̄:

n̄.
1

2p
lnUp~12l!2

u f 1uuqu2 U. ~46!

Knowing the number of iteratesn̄ it takes to escape assum
ing xn stays close to the fixed point, we use Eq.~35!, ln t
;hin, to derive the scaling withp of the average interburs
time t,

ln t;hin̄.
hi

2p
lnUp~12l!2

u f 1uuqu2 U. ~47!

Finally, using the approximationl5(11p)eiu.eiu, we ob-
tain the final scaling given in Table III:

ln t;hin̄.
hi

2p
lnUp~12eiu!2

u f 1uuqu2 U. ~48!

We numerically iterated the map~4! starting at a typical ir-
rational x and z5010i and measured the interburst tim
Figure 8 shows the result of numerical experiments~dia-
monds!; ln t is plotted vsn̄(p), wheren̄(p) is given in terms
of p by Eq. ~48!. The solid line has the predicted slopehi

5 ln 2 and is consistent with the data.
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C. Average interburst time: Noise

We now consider the case where bubbling is induced
noise, i.e.,r .0, butq50. According to Eq.~41!, for smallp
and in the presence of noise, the evolution of the radial p
of zn with x50 is the same as the evolution ofy in the
pitchfork case with cubic nonlinearity with2 f 1 as the cubic
coefficient:

uz̃n11u.~11p!uz̃nu2 f 1uz̃nu31r $nn%z . ~49!

The noise termr $nn%z is the projection of noise in the direc
tion of zn in the complex plane. Since the noise is distribut
uniformly within the unit circle,$nn%z has a one-dimensiona
probability distribution on@21,1# with probability distribu-
tion function given by 2A12$n%z

2. This distribution has
variance of 1/4. We can analyze Eq.~49! in the same way as
in Sec. III C, but withD5(1/2)r 2 Var($nn%z). Theu depen-
dence disappears from the final scaling due to the fact
the distribution of noise is uniform within the unit circle.

Our final results for Hopf bifurcation induced bubblin
transitions are summarized in Table III.

VI. FURTHER DISCUSSION OF THE NOISE-INDUCED
BUBBLING MECHANISM

In this section we provide more insight into the nature
two types of noise-induced bubbling: noise dominated a
drift dominated. Consider again the map~2!. We define a
critical valueyc such that fory.yc the nonlinear terms be
come dominant and the burst quickly follows. A burst occu
whenx comes close to the fixed pointx50 and stays there
for a large number of iteratesn̄. The probability per iterate of
that event is of order exp(2hin̄). After x has entered the
required vicinity of the fixed point, the linear coefficien

FIG. 8. This plot shows lnt vs n̄(p), wheren̄(p) is given by
Eq. ~46!, for bubbling induced by a Hopf bifurcation with asymme
try for uqu!p!1. Parameter values area51, b51, c51, d52, p
50.1, . . . ,0.15,u5pA5, andq50.015. The experimental data ar
plotted as diamonds. The solid curve has slope ln 2 predicted by
~48!.
4-11
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cos(2px)1p.11p immediately starts drivingy away from
the invariant manifold. At the timex enters the region nea
x50, y will typically be of the order of the size of the noise
y;r . Thus a burst will occur if yc;r exp(n̄p), or n̄
;p21 ln(yc /r);p21. We call this scenario drift-dominate
bubbling. The probability per iterate of initiating a burst b
this mechanism is of order exp(2hi /p) and goes to zero ex
ponentially asp comes close to the critical valuep50. This
would imply that bursts do not happen whenp50, but the
experimental results suggest otherwise. Thus we conside
other possible route for a burst that becomes important w
p sufficiently small. We call this second mechanism noi
dominated bubbling. In the noise-dominated casep is close
enough to zero that it can be ignored. In that case a b
may occur ifx comes close to the fixed pointx50 and stays
there for n̄ iterates wheren̄ is in the rangeyc /r &n̄
&(yc /r )2. With p neglected, the probability of reachingyc

in n̄ iterates is of order exp@2(yc
2/n̄r2)#. This the probability

of a burst in this case is of order exp@2(yc
2/n̄r2)#exp(2n̄hi),

which is maximized whenn̄;yc /r . This suggests that whe
such a burst occurs the noise behavescoherentlyover n̄ iter-
ates pushingy on average in the same direction away fro
the invariant manifold. Since we determinedyc for a coher-
ent perturbation to be proportional tor 1/s @see Eq.~12! and
discussion in Sec. III B#, the probability of the burst become
of order exp(2hir(12s)/s). Thus the average interburst timet
is of order

t;min„exp~hir ~12s!/s!,exp~hi /p!…. ~50!

Equation ~50! suggests that the noise-induced burst
mechanism prevails ifps/(s21)/ur u!1, while the drift-
induced bursting mechanism prevails ifps/(s21)/ur u@1.

VII. CONCLUSION

The above discussions have assumed that there is n
tractor away from the invariant manifold. In the situatio
where there is an attractor away from the invariant manifo
our analytical results derived in Secs. III–V still apply, b
the meaning oft is different. Specifically, for the case tha
we previously referred to as a hard transition,q, r 50 now
yields a riddled basin attractor on the invariant manifo
@4,10#. For q, rÞ0 this attractor is destroyed and convert
to a chaotic transient whose mean lifetime is given byt
~Tables I–III!.
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To summarize, in this work we have presented a unifi
treatment of the bubbling transitions involving all gene
types of bifurcation: pitchfork, transcritical, period doublin
and Hopf. We have theoretically derived results for scalin
of the average interburst time and the maximum burst am
tude with the normal parameter as well as con
tions for hard and soft bubbling transitions in the above th
cases for both noise- and mismatch-induced bubbling.
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APPENDIX

In this Appendix we provide details of the solution of E
~20! subject to the boundary conditionsP̄(6yc ,s)50. We
look for an approximate solution in terms of a perturbati
expansionP̄(y,s)5 P̄0(y,s)1pP̄1(y,s)1O(p2). First, we
setp50 in Eq. ~20! to obtain an equation forP̄0(y,s):

D
]2P̄0

]y2 2sP̄052d~y!. ~A1!

The solution of this equation satisfying the boundary con
tions is

P̄0~y,s!5
sinh@~yc2uyu!As/AD#

2ADs cosh~ycAs/AD !
. ~A2!

Now since we knowP̄0(y,s), we can deduce the equatio
for P̄1(y,s):

D
]2P̄1

]y2 2y
] P̄0

]y
2 P̄02sP̄150. ~A3!

Solving the above equation subject to boundary conditi
P̄1(6yc ,s)50 and (] P̄1 /]y)y5050, we obtain the expres
sion for P̄1(y,s):
P̄1~y,s!5
@12~s/D !uyu21As/Dyc tanh~As/Dyc!#sinh@As/D~ uyu2yc!#1As/D~yc2uyu!cosh@As/D~ uyu2yc!#

8 cosh~As/Dyc!
.

~A4!

Upon settings5hi and substitution of the expressions forP̄0(y,s) andP̄1(y,s) into Eq.~21! and integration overy we obtain
4-12
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ln t;2 lnF11pyc
2/~4D !2@pyc/~4AhiD !#tanh~Ahiyc /AD !

cosh~Ahiyc /AD !
G . ~A5!

The quantity Ahiyc /AD in Eq. ~A5! is large, which allows us to make the approximations cosh(Ahiyc /AD)
.exp@Ahiyc /AD#/2 and tanh(Ahiyc /AD).1, and neglect theyc/(4AhiD) term compared toyc

2/(4D), to obtain the final
scaling given in Eq.~22!.
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