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Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling,
whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to
bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes
unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become
transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a
unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining
whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies
continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling
transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft
transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random
(noise and fixed(mismatch perturbations are considered. Results of numerical experiments testing our theo-
retical predictions are presented.
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[. INTRODUCTION orbits are repelled and move away from the invariant mani-
fold. If there is no other attractor off the invariant manifold,
In this paper we will be concerned with dynamical sys-the orbit returns, and, assuming that the perturbations con-
tems that contain an invariant manifdlt] embedded in their tinue, this process repeats, producing intermittent bursts
phase space and for which there exists a chaotic attractor sway from the invariant manifold. If, on the other hand, there
the invariant manifold. Such systems are common in a variis another attractor not on the invariant manifold, orbits ini-
ety of physical situations, and they display interesting dy-tially repelled from the periodic orbit on the invariant mani-
namical behaviors. Types of such dynamical behavior infold may go to that attractor and never return. For definite-
clude on-off intermittency[2], riddled basins of attraction ness, the following discussion will not consider the case
[3], and bubblind4—8]. Examples of systems having invari- where there is another attractor not on the invariant mani-
ant manifolds include systems with spatial symmdi®y, fold, although later on in the papéBec. VI) we indicate
predator-prey modelsl0], magnetic dynamofsl1], and syn-  how our results carry over to this case.
chronized chaotic oscillatofd.2]. The subject of this paper We consider the dependence of bursting on two param-
is the transition to bubbling. Followinf#], we introduce a eters: the normal parameter and the size of perturbations
normal parameter—a parameter whose variation affects théransverse to the invariant manifold. These perturbations,
system dynamics off the invariant manifold but leaves thewhich we assume to be small, may be rand@mise or
dynamics within the invariant manifold unchanged. For ex-fixed (as in the case of coupled oscillators when there may be
ample, in the case of synchronization of two coupled chaoti@ slight mismatch between the two oscillajorSor a given
oscillators[as in Egs.(1)], the coupling strength is the nor- fixed value of the normal parameter beyond the bubbling
mal parameter. The bubbling transition occurs when, as &ansition, as the size of the perturbations goes to zero, the
normal parameter is varied, a periodic orbit embedded withinypical size of bursts remains finite. Thus we can define a
the chaotic attractor first becomes unstable to perturbationmaximum burst amplitude as a function of the normal pa-
transverse to the invariant surfddes]. Before the transition, rameter as the maximum size of bursts in the limit as the
all periodic orbits in the chaotic attractor are transverselyperturbation size goes to zero.
stable. Beyond the bubbling transition, if the system is per- We distinguish between two types of bubbling transition:
turbed in a direction transverse to the invariant manifold,soft and hard. When a soft bubbling transition occurs, the
orbits that come close to the transversely unstable periodimaximum burst amplitude increases continuously from zero
as the value of the system’s normal parameter goes through
its critical value. When a hard transition occurs, the maxi-
*Corresponding author. FAX(301)314-9363. Email address: mum burst amplitude increases discontinuously from zero to
alekseyz@physics.umd.edu a finite value at the bifurcation.
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In this paper we investigate the transition to bubbling as dz,
the normal parameter of the system goes through its critical ar ~ Fi(@) +kh(z—2), (13
value and find the conditions on the other parameters of the
system leading to soft or hard transitions. We present results dz
for the dependence of the maximum burst amplitude on the —2:F2(21)+kf2(22—zl), (1b)
normal parameter for a soft transition and the dependence of dt
the average interburst time on the normal parameter and the

size of the perturbations for both hard and soft transitions. AéNhslze_fLZ and l'_:1,2 are fm(t)oéh f;Jhr}Cti(_)tns‘,%_(bQ) =ﬂf]2(0) =0, |
previously mentioned, the bubbling transition is marked byan IS & coupling constant. Forthis situatiems the norma
arameter in the system. First consider the case where the

the loss of transverse stability by a periodic orbit of the chalare . :
otic attractor in the invariant manifold. In the presence of theoscillators are identicaks;(2) =F,(z) =F(2). The synchro-
invariant manifold, there are three ways by which such a Iosé"zed statez, =2, represents an invariant surface embedded
of transverse stability can occur: the eigenvalue of the trang” the full (z,.z,) phase space. Let= (z1+2,)/ 2. anc_j y
verse map can increase through+1 or (i) —1 or (iii) be :,(21_22)/2' In these coordlnat'eS(,y) the dynamlqs X
complex and increase through the unit circle. These threith Y=0 represents the dynamics along the invariant mani-
ways generically correspond 0 a pitchfork or transcritical 0!d- We ask, what is the effect of small perturbations to this
bifurcation, (i) a period-doubling bifurcation, andii) a system caused by noise or mismatch on the dynamics in the

Hoof bifurcation[141. In [71 and[8] the behavior of a svstem Y direction (i.e., transverse to the invariant manifiidin
b . [ ]. [7] : [8] : y kparticular, what is the effect of a small noise of ordexdded

and transcritical bifurcatioficase(i)] was studied, and re- t© the right-hand sides of Eqgl) or of a small deviation
such that the two oscillators are not identi¢adismatch,

sults for the average interburst time and maximum burst am . . .
plitude were derived. IfiL5] the stability of low period orbits |71~ Fall~a<1? These perturbations will typically destroy
and the transition to bubbling due to the three generic typed€ invariance of the invariant manifolg =z In what fol-

of bifurcations were observed, and conditions determinind®Ws We consider discrete time systems, possibly obtained
whether the transition is hard or soft were derived for a sysVia & surface of section from a continuous time sysferg.,

tem of coupled Rssler attractors. The bifurcation scenarios £dS: (1] If the synchronized state, =2z, without noise or

in case(i) were explored further ifi16,17), while period- mlsmz_;\tch is chaotic, we can model the dynamics using the
doubling induced bubblingcase (ii)] was observed in following model systems.

[18,19. In[17] and[19], the effect of both fixed and random

perturbations on the average interburst time and maximum [l. MODEL SYSTEMS

burst amplitude was considered. Our results for d@gen
Sec. IV are consistent with the scaling resultgii,19 for X . X : >ou
average interburst time as a function of perturbation sizef@Mics on the invariant manifold is given By, ,=2x, mod
however, we focus instead on the dependence on the nornra@Nd that the periodic orbit that becomes transversely un-
parameter and on those scaling regions for which bursting iStaPle at the bubbling bifurcation is the fixed point0.

dominated by either the normal parameter or the randonY!0re generally, the bifurcation may occur at a higher period
term. orbit, but this orbit will typically have low perioi12]. Our

In our paper we present a unified treatment covering al[esults below depend on the dynamics within and transverse

generic types of bubbling bifurcation. The contributions of 1© the invariant manifold in the following ways. Within the
the present paper are as followis: We derive theoretically nvariant manifold, the results depend only on the largest
the conditions for hard and soft bubbling transitions for three-YaPunov exponent of the bifurcating orbit, which we denote
generic types of bubbling bifurcation in terms of the coeffi-PY My Transverse to the invariant manifold, our results de-
cients of the canonical form&j) we derive theoretically the P€nd on the local dynamics in the “center manifold” corre-
scaling of the maximum burst amplitude and average interSPonding to the eigenval(® on the unit circle at the bifur-
burst time with the normal parameter, and, in the case of@tion, which we represent by a complex variabla the
interburst time, the size of perturbations transverse to th&2S€ Of a Hopf bifurcation and by a real variaiéor the
invariant manifold;(iii ) we verify our predicted scalings by other t_)n‘urcatlons. We include only the quadr_atlc and cubic
the results of numerical experiments. We present analyses §f'Ms iny andz that are necessary to determine tigmal

both mismatch-induced and noise-induced bubbling, but W,gorm for the bifurcation—that is, to describe the bifurcation
pay particular attention to the case of noise-induced bubt® the lowest order. For details on center manifolds and nor-

bling, where we use the Fokker-Planck diffusion approxima-Ma! forms, se¢20].

tion to obtain the interburst time scaling results. Our deriva- Model for pitchfork and transcritical bifurcationg-or the
tions are based on model systems, where we use canoni&#Se of a transverse pitchfork or transcritical bifurcation we
forms of the bifurcations to represent the transverse dynanfonsider a model system of the foiigi:
ics.
As a specific example of a system that our analysis might Xn+1=2X, mod 1, (2a)
be applied to, consider the general case of synchronization of
two coupled oscillators, as described by the following system y,.1=[cog27X,)+ply,+ays+q+rv, for |y|<1,
of equations: (2b)

To simplify our analysis we assume that the chaotic dy-
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wherex,, andy,, are realp is the bifurcation parameter with becomes unstable a® increases through zero with
p>0 (p<0) above(below the bubbling transition, andis  dy,,;/dy, decreasing through—1, corresponding to a
the mismatch parameter. The, term represents noise in the period-doubling bifurcation. In the case of coupled oscilla-
system with magnitude>0. We assume that, are random tors (1) with symmetric coupling f;=f,), a=0, but with
numbers uniformly distributed dn-1,1]. The termay” with  asymmetric coupling f(#f,), both quadratic and cubic
o=2 or 3 in Eq.(2b) represents the lowest ordgmonlin-  terms may be present. Because the local structure of a
earity of the system at the fixed poixt=0. We assume that period-doubling bifurcation is determined by the terms of
Ipl<1,]q[<1, and|r|<1 but|a]=0O(1). Thedynamics ik order up to 3, we neglect all terms of order higher tiyan
models the chaotic dynamics in the invariant manifold a”dand, since both the quadratic and cubic terms are important,

the dynamics iny models the dynamics transverse to the e qo not treat the cases of symmetric and asymmetric cou-
invariant manifold. In this and the following models the pling separately

equation for they dynamics models the local evolution of the Model for Hopf bifurcationsin the case where the trans-

system close to the invariant manifold. Agt>1, it is pre- . . o L ) .
sumed that Eq(2b) does not apply and that there is a con- waerseemtslfg;cfg:ao?Oﬁ:)\ltvr;ﬁgpriré%(zﬁ orbit is a Hopf bifurcation,

fining nonlinearity that sends the orbit back to the region
ly|<1 (in particular, there is no attractor jg|>1). Consid-
eringg=0 andr =0, the linearized/ dynamics at the fixed
point x=0 is governed by, 1=(1+p)y,; thus, asp in-
creases through zerdy,, ;/dy, increases through1, cor-
responding to a pitchfork or transcritical bifurcation in the _
transverse dynamics at the=0 fixed point. Symmetric cou- Z11=[cog2mx,)) + ple' 2, +azZ; + bz, zy +c(z) )
pling (f;=f,) in Eq. (1) is modeled byor= 3, and asymmet-
ric coupling f,#f,) is modeled byr=2. For the symmetric
case, the symmetry— —y rules out the possibility of g2
term in Eq.(2b). The termq represents a small mismatch

F.—F,. In the absence of noise and mismatch we have ai/herez, is complex andz, is the complex conjugate af,.
invariant liney=0, on which there exists a chaotic invariant AS in the previous casep,andr are small real parameters.
set generated by Eqla). The stability of this line is gov- The quantitiesy b, ¢, d, g, andr are complex parameters of
erned by the coefficient of, in the first term on the right the system withq|,|r[<1 and|max@,b,c,d)|=0(1). Thewr,
hand side of Eq(3b). Since cos(Zx,) is maximum atx  are complex random numbers uniformly distributed within
=0, the period-1 orbit atx,y)=(0,0) withq=0 andr=0  the unit circle. In this model complex models the two-
becomes transversely unstable mscreases through zero, dimensional dynamics transverse to the invariant manifold,
and the corresponding bifurcation is a transcritical bifurca-while the variablex models the dynamics along the invariant
tion if =2 (asymmetric couplingor a pitchfork bifurcation ~ manifold. Forg=0 andr =0, the quantitydz, ; /dz, evalu-
if o=3 (symmetric coupling In terms of Egs.(1), pis ated at the fixed poink=0 has its magnitude increase
analogous toK.— k), wherek, is the critical bubbling value through unity ap increases through zero. Fa@i2 irrational
of the coupling strengttk. We refer top=0 as the critical this corresponds to a Hopf bifurcation. This model includes
parameter value. Because the local structure of a pitchfork dhe above mentioned pitchfork or transcritical and period-
transcritical bifurcation(e.g., subcritical or supercritidals ~ doubling bubbling bifurcations as special cases with0
determined by the lowest order nonzero nonlinear term, wéeing the pitchfork or transcritical case a#iek = being the
neglect all terms of order higher thgfi. Note that the chaos period-doubling case. Although it is possible to get all results
in the invariant manifold = 0) is unaffected by [Eq.(2a)  for period-doubling and pitchfork or transcritical bifurcations
is independent op]. from the model(4), we will use the model$2) and (3) for
Model for period-doubling bifurcationsFor the period- these special cases to simplify the analysis. The mismatch
doubling case we consider a model system of the form parameterq again breaks the invariance of the lize=0
+0i. We included all possible terms quadraticznin pre-

Xpr1=2X, mod 1, (4a)

+d|z,|%z,+q+r1v, for |z]<1, (4b)

Xn+1=2X, mod 1, (3@ vious work on the Hopf bifurcation it has been shown that
5 5 out of all possible terms cubic inonly the term proportional
Yn+1= —[COL2mX) + plyntay,+byg+q+rvy, to |z,|%z, is relevant to the local structure of the bifurcation

for ly|<1, 3p)  [22].

The results we obtain for model®), (3), and (4) are
wherex,, andy, are realp is the bifurcation parameter with given in Tables I-Ill. We treat the cases of mismateh (
p>0 (p<0) above(below the bubbling transition, and, b, ~ +0) and noise (+0) separately; when both and r are
g, andr>0 are parameters of the system whose values deaonzero, the average interburst time will scale as the smaller
fine the type of transition occurring gs goes through 0. of the two expressions given. We claim that these results can
Again we assume thdp|,|q|,|r|<1 and maxg@l,[b)=0(1). be applied to any generic situation exhibiting a bubbling
The v, are random numbers uniformly distributed pal, transition. For the case of the pitchfork or transcritical bifur-
1]. Consideringg=0 andr =0, the linearized/ dynamics at cation this claim has been confirmed experimentdtige
thex=0 fixed point of Eq.(3a) isy,;1=—(1+p)y, which  [8]).
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TABLE I. Summary of results for the pitchfork and transcritical bifurcations using the model sy&jem
with D= (1/2)r2 Var(v).

Symmetric coupling Asymmetric coupling

(0=3) (0=2)
Condition for hard transition a>0 ga>0 orr#0
Condition for soft transition a<0 ga<0 andr=0
Maximum burst amplitudésoft transition A=(p/|a|)*? A=pl/|a|

for max(q,|r|)?*<p<1 for q*2<p<1

In 7~(hy /p)In[p* |ag?|*?]
for |g|¥®<p<1

In 7~(hy /p)In[p*|ad]]
for |g|Y2<p<1

Average interburst timémismatch

In 7~ (h,/2p)In[p%/|aD]] In 7~(h/2p)IN[p*(a2D)]
for r¥l<p<1 for ri?<p<1
|n T~h‘_"|./2|aD) —1/3__ %p(aD) —2/3 In T~h|2‘l./2(a2D)1/47 %p(aZD) —-1/2

Average interburst timénoise

for p<r?<1 for p<ri?<1

Ill. PITCHFORK AND TRANSCRITICAL BIFURCATIONS namics whenx=0. Theny satisfies the relation

A. Maximum burst amplitude and stability -
. . . L Ynr1— Yn=PYntay,+q. (5
In this subsection we review the derivation of the theoret-

ical result for the maximum burst amplitude for the case of a
pitchfork or transcritical bubbling bifurcation in the mé&p.
We derive the results for the noiseless case) first. This
derivation serves as a model for the treatments of the perio
doubling and Hopf cases, and closely folloy#8]. In the
case of symmetric couplinge(=3) we will show that we
have a soft bubbling transition #<0 and a hard bubbling
transition if a>0. In the case of asymmetric couplingr (
=2), we will show thatqa>0 corresponds to a hard tran-
sition, andga<0 corresponds to a soft transition.

For small positivep, the factor p+cos(27x,)] is greater
than 1 only in a small region near the fixed poit O of EqQ.
(1a) (sincex is taken modulo 1, we consider valuesxaiear
1 to be near D Thus a burst can only be initiated when the
chaoticx orbit comes near enough to=0 that it remains
there long enough foy to burst. The burst ends when  (In this and further equations we useto denote “approxi-
moves away from the fixed point. In order to compute themately equal” and~ to denote “equal up to a constant.ln
maximum possible burst amplitude, we first consider the dyparticular, wherp=>q(“~ 1’7, we haveA =|p/a|¥(“~ 1),

Assume for definiteness thgt>0. Then, in the case of a
soft transition @<0), if x=0 theny increases but is
(})_ounded from above by the positive solution of

pA+aA?+q=0. (6)

Since the maximum value thgtcan reach is\, this value
represents the maximum burst amplitude for all trajectories
that start neay=0. SinceaA? is the only negative term on
the left-hand side of Eq6), the solution forA can be esti-
mated byA“=max(A/|al,|g/al) which yields

A=max(p/|a})¥“~V |q/al*"). (7)

TABLE Il. Summary of results for the period-doubling bifurcation using the model sy&3riVe use the
notationp=p—aq and D = (1/2)r? Var(v).

Condition for hard transition a’+b<0
Condition for soft transition a’+b>0
Maximum burst amplitudésoft transition A=\/pl(a®+b)

Average interburst timémismatch

Average interburst timénoise

for max(qg>r?d)<p<1

In 7~ (hy/2p) In[p/(|a*+b|c?)]
for |q]?<p<1

In =~(hy/2p) In[p%(|a®+b|D)]
for r¥<p<1
In 7~h’[ (a®+b)D] ¥~ p[(a®+b)D] 2?
for p<r?<1
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TABLE Ill. Summary of results for the Hopf bifurcationf, is defined in Eq.(42), and D

=(1/2)r? Var(»)].

Condition for hard transition

Condition for soft transition

Maximum burst amplitudésoft transition

Average interburst timémismatch

Average interburst timénoise

RE1-2€%e 21— €% ]ab}+(1/2)bb* +cc*
—Rede %<0

RE(1—-2€%e 21— e'"Jab}+ (1/2)bb* +cc*
—Re@de '%)>0

AZ \ p/fl
for max(q|,r?¥)<p<1
In 7~(hy/2p)In|p(1—e')?/|f,q|?|
for |g|<p<1
In 7=(h,/2p)In[p?|f,D])
for r¥<p<1
In 7=h"(f,D) ~*— 2p(f,D)
for p<r?®<1

Whenqg<0, a soft transition will occur if and only if Eq.
(6) has a negative rodk. Thus if c=2 we needa>0 for a
soft transition, while ifo=3 we needa<O0. In these cases,
the magnitude of the negative rodtis given by the right

average interburst time we note that, in order to initiate a
burst, an orbit must come withig of x=0 wheree is suffi-
ciently small that the orbit remains nea+0 for at leasin
iterates. Since the invariant density generated by (Bgis

side of Eq.(7). In the case of noise, for asymmetric coupling uniform in x, we have that the average timéetween bursts
(0=2) the transition is always hard; because the noise cais given by 1=s. We expresg: in terms ofn as follows.
take either sign, there will be both large and small bursts. FoFor small initial x, nearx=0, the subsequent iterates grow

symmetric coupling §=3), we still have a soft transition if
a<0 and a hard transition i&>0. In the case of a soft

exponentially axg exp(n) whereh,=In2 is the Lyapunov
exponent of Eq(1a). Requiring that exphn)=<4, wheres

transition, by arguments similar to the one above, we have<l is O(1), weobtain the desired estimate efand hence

A=(p/|a])¥*~1) whenr?P<p<1.

B. Average interburst time: Mismatch

of the average interburst time in termsraf

In7~1In Sil:huﬁ (10)

In what follows we derive results for the average inter- Substitutingn from Eq.(9) into Eq.(10) we obtain the result
burst time for soft and hard bubbling transitions. We firstfor the scaling of Irr,

consider the effect of mismatch in the noiseless aasé.

The analysis in the previous section shows that the nonlinear In s~ hy In( Pyc>

term ay’ is insignificant when |y|<y,
~max(p/|a])¥ 1 (g/|a])), while wheny grows close
to y., the nonlinear term will either confine the bufsbft
transition) or rapidly accelerate the orbit tp=0(1) (hard

W (11

This result is recorded in Table | with the appropriate value
of y. substituted.

o
p

transition). Either way, we can estimate the interburst time as

the time for|y| to reachy, in the absence of the nonlinear

term.
Assuming thatx stays at its fixed poink=0, the nth

C. Average interburst time: Noise

We now derive the scaling for the average interburst time
in the presence of small bounded noise in the rt@&pWe

iteratey,, for n>0 in the absence of the nonlinearity can begg|ate the effect of noise by takirg=0. We consider thg

written as
nt . 1+p)"—1
yﬁzo (1+p)'q=W- ®)

Hence we can compute the time for an initial point
(X0,Y0)=(0,0) to reachy, by settingyz=Yy. which yields

_ 1 (pyc>
n~—In| —]|.

o™ Tal ©)

This expression is valid fopy.>q, which corresponds to
the casg>q(“~Y'” andy.~ (p/|a])¥“~ 1. To estimate the

dynamics in this case to be a drift-diffusion problem with
drift proportional to terms linear iy, i.e., py, and diffusion
due to noise v,. We split the problem into two parts: First
we consider drift-dominated bubbling corresponding to the
case where the effect of they drift is dominant in develop-

ing a burst, and then we consider noise-dominated bursting
corresponding to the case where the effect of the noise term
rv, is dominant. For both cases we will derive asymptotic
upper bounds on the mean interburst time, and our final re-
sult for the interburst time will be the minimum of these two
bounds. We also derive a relation betwgeandr that de-
termines what kind of bursting is dominant and thus which
scaling applies.
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First we consider noise-dominated bursting. In this cas@he continuous time approximation of E@.3) requires that
Eg. (2b) with x=0 can be approximated as a random walkh, be small. We note, however, that Ed4) is valid as an
process with small drift. We characterize this process withorder of magnitude estimate even whepis of order 1.
two quantities: the drift per iteratpy, and the diffusion Sincer>1, and since we will use Eq14) only to estimate
coefficientD = (1/2)r? Var(v). Here Vatv) is the variance of the logarithm ofr, an order of magnitude estimate is suffi-
the random variable, (mean value oﬁzﬁ). For our numeri- cient. To estimate(t), we consider the time evolution of
cal experimentsy, is uniformly distributed in[—1,1], in  the probability distribution function foy, P(y,t) for the
which case Varg) =1/3. situation in which an orbit starts gt=0 at timet=0 and is

As in the previous section, we assume that there is a criticonsidered to burst whejy| exceedsy.. Accordingly, we
cal valuey, such that we can estimate the time to produce s&assume thaP(y,0)=&(y) and thatP(y,t)=0 for |y|=y,,
burst as the time fofy| to reachy, in the absence of the so thatP(y,t) for |y|<y. represents the probability distribu-
nonlinear termay”. We sety. such that the size of the non- tion function for trajectories that have not yet reachgf
linear term is equal to the typical size of the noitgly! =Y. at timet. Thus
~/D. Hence we have

JD

a

Ye
1o Q)= J P(y,t)dy (19
—Ye
. (12
and

Ye~~

By definingy. in this manner, we ensure that the nonlin- ve [
ear term dominates the noise fpy|>y.. However, it is In TN_'”[l_huf j ehtp(y,t)dtdy]- (16)
possible that the nonlinear term becomes significantyor TYel0
<Y, because it behaves coherently from one iterate to th@ye obtain the probability distribution functioR(y,t) using
next while the noise term may not. Thus by ignoring thethe Fokker-Planck diffusion approximation. Ignoring the
nonlinear term forly|<y. we may be overestimating the nonlinear termsy”, the evolution of the probability distri-

interburst time. However, our estimate remains an uppepution functionP(y,t) is given by the solution of the follow-
bound on the interburst time, and our simulations show thajng drift-diffusion equation:

this upper bound correctly describes the actual interburst

time scaling in the noise-dominated case. The reason for this PP 9P 9

is that a burst most often occurs when the noise does behave ay ~ ot + W(pyP), 17)
coherently; we discuss this point further in Sec. VI.

The average interburst timeis the inverse of the prob- wherepy andD are the above mentioned drift velocity and
ability per unit time of initiating a burst. By initiating a burst, average diffusion per iterate parameters. Recall that the ini-
we mean thak maps close to thaving not been close on the tial condition isP(y,0)= 8(y) and the boundary conditions
previous iteratiopy and that a burst will happen during the areP(*y,,t)=0. We solve this equation by first performing
time x remains close to 0. In the previous section, we coulda Laplace transform with respect to the time variable
say exactly how many iterations1 x needed to remain
close to 0 in order for a burst to occur, but in the noise- =y N
dominated case we cannot. Instead, we proceed as follows. P(y,s)—f e "Ply.ndt.
Let Q(n) be the probability thaly| has remained in the range
ly|<y. up to timen. The probability thaty| exceedsy, for Note that this integral is the same as the integration over
some time at or before timeis 1—Q(n). As in the previous on the right-hand side of Eq16) with s replaced byh;.
section, the probability that will map close enough to 0 to Thus
stay there for at leagt iterations is proportional t@™"".

Thus the prqbability thax rem:iins cIo§e to zero for exactly In 7~ —In 1_h”fy° E(y,hu)dy . (19)
n iterations is proportional t@ ""—e M1 Hence 1#, “ve
the probability per unit time of initiating a burst, satisfies

(18

The differential equation foE(y,s) is

L
- —hn_ o—h;(n+1) _ 2 o
= goae n—e M —Q(n)]}. (13 %_py%_(pﬂw:_&(y), 20

To estimate Eq(13) we utilize a continuous time approxi-
mation for they dynamics, with the continuous variabte
replacingn. Equation(13) becomes

with boundary conditions§_>(iyC ,8)=0. The exact solution

of this equation satisfying the boundary conditions can be

expressed in terms of parabolic cylinder functi¢@g], and

is rather cumbersome. For smplive have developed a per-
o o turbation expansion approach that gives the lowest order in

s hitrq — —1_ hyt

=M Jo e M1-Qyldt=1 h“JO e Ryt behavior. We first find the solution to E¢RO) for p=0 and

(14)  call it Py(y,s). Then we represenP(y,s) in the form
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FIG. 1. This plot shows Imrvs D~ for bubbling induced by a FIG. 2. This plot shows Irrvs p for bubbling induced by pitch-
pitchfork bifurcation with noise in noise-dominated capesr?®  fork bifurcation with noise in the noise-dominated capesr?°
<1. Dis the diffusion coefficientD = (1/2)r2 Var(v). Parameter ~<1. Parameter values ase-=2,r=0.08, andr=3. The experimen-
values ar@=1,p=0, ¢=3, andr=0.1, . .. 0.2. The experimental tal data are plotted as diamonds. The solid curve has sidfel
data are plotted as diamonds. The solid curve has the sfppe  Predicted by scaling given in Table I.

=4/In 2 predicted by scaling given in Table I.
P Y 99 We now consider drift-dominated bursting. In this case,

- = = 2 : . we again claim that a burst occurs whgibecomes greater
F’(y,s)—Po(y,s)+pP1(y,s)iO(p ), SL_JbSt'tUtE this form than a critical valuey. beyond which the nonlinear term
into Eq. (20) and solve forP,(y,s) subject toPy(£Y¢,S)  dominates. As an upper bound for the critical vajyewe

=0. Thus we obtain the first order ip correction to the ;se the same value for the burst threshold as we used in the
solution(see the AppendixWriting 7in terms ofP(y,s) we  case of mismatch, i.ey.= (p/|a|)(afl)’l_ If y~V, the non-

obtain linear term either confines the orlffor =3 anda<0), or
, else rapidly accelerates the orbityte-O(1). As in themis-
o _ ¢ 5 ) match case we first estimate the average number of iterates
7 In{ 1=hy f—yc[ Poly:hi)+pPa(y.hy)Jdy +O(L). required fory to reachy, starting at a valug,=0, ignoring
(21)  the nonlinear term and assuming thagtays at Qunlike for
noise-dominated bursting, the number of iterates does not
Performing the integral above, and making the appropriatelepend strongly on whether the noise behaves coheyently
approximationgsee the Appendjx we obtain the scaling of The nth iterate then can be written as
In 7 with p andD: I

Py§ Yn=rzb (1+p)y. (24)

|I’1 T"’yc\h”/D_E. (22)
Since v; are random variables with mean zero, we deduce
This scaling is valid as long as the second term is smaifhat

compared to the first one; that is, whe{/(®~V/|r|<1. (14 p)2"—1]

Upon substitution of the expressi¢h?2) for y into Eq.(22), Var(y,) = ,
we obtain our final expression for the scaling ofrJn p(2+p)
N5) Ve NG) 2Uer where D= (1/2)r?Var(v) is the previously defined average
In 7~ /h. /D Vb _p NP (23  diffusion per iterate. Fop<1, we can simplify the expres-
"l a 4D| a sion for the variance Vay(,)=(D/p)[(1+p)2"—1]. Now

we set the burst condition to Vqr©=y§, wheren is the
This equation is also given in Table I. average number of iterates of the map required on average
To numerically test the scaling results, we iterated magor y,, to become equal to or greater thgp,
(2) starting aty=0 and a typicalirrational) value ofx with
vy distributed uniformly or{—1,1], and measured the aver- D o )
age interburst time for different values of the paramefers E[(1+ p)T—-1]=yc. (29)
andr. Figure 1 compares the derived scaliisglid line) with
the results from the numerical experimédiamond$, where  Solving the above equation for, and dropping higher order
p=0 andr is varied. In Fig. 2, we varp, keepingr fixed. p andD terms, we obtain
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138 T T T T y y IV. PERIOD-DOUBLING BIFURCATION

A. Maximum burst amplitude and stability

In this section we present a derivation of theoretical re-
sults and results of numerical experiments for the period-
doubling bifurcation induced bubbling transition. We start
with the case of no noisez=0 in our model systen{3).
Consider an orbit starting a(y)=(0,0) for the map(2).
Note that(0, 0 is a fixed point of the map fog=0. The
subsequent iterates obey the relation

126

16

Yni2—Yn=2(p—aq)y,—2(a’+b)yi—(p—aq)q
+0(py?, p?y,a%y,ay%,adyt,pay). (29

105~ 5 5 - o 5 - 5 8 Making the change of variablgs=p—aq, we have

v —9Ry 2 3 a
FIG. 3. This plot shows Im vs n(p), wheren(p) is given by Yn+2~Yn=2PYn—2(a"+ D)y, —Pq
Eqg. (26), for bubbling induced by a pitchfork bifurcation with noise +O(BV2 B2v.a2v.ad.av2.v4 i 30
in the drift-dominated case,?®<p<1. Parameter values a@ (Py%p%y.ay.a%ay"y",pay). (30
=2, 0=3, andr =0.005. The experimental data are plotted as dia-

monds. The solid curve has slope In 2 predicted by scaling given inOf course, ifp>|ad|, thenp=p, but for smaller values gf

Table I. the distinction betweep andp will be significant. We pro-
ceed by analyzing Eq29) in the same way we treated Eq.
1 0y (5). Settingy,+>2—Y,=0, we obtain the equation for the
= Z_pIn(FC) (26) ~ Maximum burst amplituda.:

AA — 24 3_9Hg=0.
Notice that, if the noise behaved coherenay v,=1 for 2PA=2(a”+b)A%=pg=0 3D

all n), the result forn would differ only in thatp would be
replaced byp? inside the logarithmone can see this by
replacing|g| with r in Eq. (9)]. Using In7~hyn, we obtain

As for the derivation of Eq(7) in the casesc=3, we con-
clude that fora®+b>0,

~ 1/2 ~ 1/3
h py2 - p p|Q|
This is the final scaling result given in the Table I. In particular, if|g|?<p<1, thenp*>>(p|q|)”® and we

We have numerically tested our theoretical result for drift-have
dominated bubbling by iterating the mdp) starting aty
=0 and a typicalirrational) value ofx with v, distributed A=+/p/(a’+b). (33
uniformly on[—1,1], and measuring the average interburst
time. The parametep was varied with the other parameter [A result that accounts for the effect of mismatch more ac-
values set ad=2, 0=3, andr =0.005. In Fig. 3 we plot I curately can be obtained by solving Ed1) for A and taking
from the numerical experiments V§p) given by Eq.(26).  the appropriate rodtThus forx=0 anda®+b>0, the linear
The results of the numerical experiments are shown as diaxponential increase of (namely, y,.,—Y,=2py,) is
monds. The solid curve has a slopehpt=In 2 predicted by  eventually arrested by nonlinearity, aydreaches a maxi-
the scaling given in Table |. mum,y=A, that is smallO(p*?), for smallp, correspond-
Now we consider the condition gnandr that determines ing to a soft transition. Foa?+b<0, A does not exist, and,
what kind of bursting prevails, and hence which scaling apwhen |y|~|p/(a?+b)|*? the nonlinearity accelerates the
plies. To do that, we set the two relations EB3) and Eq.  growth ofy, leading to a hard transition.
(27) equal in the lowest significant order: We now obtain the conditions on the parameters that will
determine whether the transition is soft or hard. The type of
\/W‘E transition is determined by the sign of the expression under
I a the square root in the denominator of E§3), positive cor-
responding to a soft transition and negative corresponding to
We arrive at the conclusion that the two scalings agree whea hard transition. Thus we have that the transition is hard if
p’®=B/|r|=0(1). Thus noise-dominated bubbling pre- a?+b<0 and soft ifa?+b>0. We have tested the above
vails whenp?/(?~1)/|r|<1 and the drift-dominated bubbling results in numerical experiments on Hg). Forb=—4 the
prevails if p”(“~Y/|r|>1. This result is consistent with the transition is hard if- 2<a<2. Figure 4a) illustrates the soft
order-of-magnitude estimate presented in Sec. VI. transition if we iterate Eq3) starting at q,Yo) =(0,0). The

=—, 28
o (28
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FIG. 4. Plot(a) shows the maximum burst amplitudevs p for 15l
the soft transition in period-doubling induced bubbling, m&p % ¢
The experimental data are plotted as dots. The solid curve is the 15}
theoretical result from Eq33). Plot (b) shows the bursting time

series for hard transition ap=0.27. Parameter values awg 7 18 1 ) 7o) 2
=0.003,a=—-1.9(a), a=—-2.3,(b) andb= —4. (
FIG. 5. This plot shows Im vs n(p), wheren(p) is given by

data from numerical experiments is plotted as dots. Figurg:q (34), for bubbling induced by a period-doubling bifurcation
4(b) shows a bursting time series for a hard bubbling transiyjth asymmetry forgq?<p<1. Parameter values ara=1, b

tion. =—2,g=0.008 withp varying from 0.14 to 0.22. The experimen-

In the case of noise, we have a soft transitionaf  b) tal data are plotted as diamonds. The solid curve has a slope of In 2
>0 and a hard transition ifa?+b) <0. In the case of a soft predicted by scaling given in Table II.
transition, by arguments similar to the one above, we have

A= \/;‘)/(a2+ b) whenr??<p<1. become greater than 1. For the parameters of Fig. 5 the tran-
sition is hard sincea?+b<0. The experimental data are
B. Average interburst time: Mismatch plotted as diamonds. Figure 5 presents these data@assin

n(p) wheren(p) is obtained from Eq(34). The solid line
has the slope dfi,=In 2 predicted by Eq(35) and is consis-
tent with the data.

To begin the analysis, we first note from E§) that the
average magnitude of between bursts is of ordey. We
again consider the second iterate of the iy, for x=0
with terms of higher order ip and g dropped, resulting in _ _ _
Eq. (29). C. Average interburst time: Noise

Equation(30) shows that in the case of a soft transition  In this section we deduce the expression for average in-
the nonlinearity limits the increase df| at the value of terburst time for period-doubling-induced bubbling. Similar
Jp/|a®+b]. Denote this value of as the critical valusy, . to the previous section we consider every other iterate of Eq.
In the case of a hard transition, the nonlinear terms quickly3b) in the presence of noise and the absence of mismatch
pushy to |y|~0O(1) as soon ag/| grows to a value of the (q=0) with x at its fixed pointx=0:
ordery.. As mentioned earlier, at the beginning of a buyrst ) 3
is of orderq. The termpq only determines the direction of Yn+2~Yn=2PYn—2(a°+b)yy+r(vni1—vy).  (36)
the burst and therefore it is rather insignificant, being at most

of the order of the Ry term. Thus for simplicity we ignore it We Aredefine the noisg \/Aariablezr(ﬂ—_ Vn) as Vn, Where
and assume that, whencomes close to zerg=q. Then  Va(Pn) =2 Var(vy). With ,, Eq. (36) is equivalent to the

yn=(1+2p)"?q and setting/==y. we obtain the following 2S¢ of noise in a pitchfork bifurcatior & 3). The variance

expression for the number of iteratasrequired forly| to Of_”” IS dOUblﬁ th_e variance oé”’ but sm;e we are c?_nsﬁ-
reachy, (i.e., to initiate a burst ering every other iterate of,, these two effects cancel in the

computation of the average interburst time. Thus all results
_ 1 [y derived in Sec. Il C apply, including the scaling ranges, if
n== 6|n(m> (34 we use the derived expressions for average interburst time

for o=3 with a?+ b as the coefficient of the cubic term. The
for |q|?<p<1. From Eqgs.(9) and (34), we obtain the de- results for period-doubling bifurcation induced bubbling are

sired estimate for the average interburst time, summarized in Table II.
To test the scaling results we iterated nf@pstarting at a
— hy [ye typical irrationalx andy=0 with v, distributed uniformly
In 7~hn= Eln(m) (39 on[-1,1] and measured the average interburst time for dif-

ferent values of, keeping the noise magnituddixed. Fig-
which is also given in Table II. ure 6 compares the derived scaling result with the experi-
We have obtained the scaling efwith p numerically by  mental results. We plot Iafor different values op keeping
starting the mag3) at a random initiak andy=0 and mea- other parameters fixed. Numerical data are plotted as dia-
suring the average number of iterates that it took|§pto ~ monds.
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FIG. 7. This plot shows the maximum burst amplitulless p

period-doubling bifurcation with noise in the noise-dominated casefor a soft transition in Hopf-bifurcation-induced bubbling. The ex-

p<r?®<1. Parameter values age=1, b=—4, andr=0.08. The

perimental data are plotted as dots. The solid curve is the theoretical

experimental data are plotted as diamonds. The solid curve has thesult from Eq.(44). Parameter values a@=0.1, b=0, c=0.1,

slope—11.5 predicted by scaling given in Table II.

V. HOPF BIFURCATION
A. Maximum burst amplitude and stability

Next we examine the case of a Hopf bifurcation, Eds.
We consider an orbit starting ax,¢)=(0,0+0i), and take

p=0 (i.e., we consider the map at the critical bifurcation
point). For the validity of the analysis below we assume that
the angled in the exponent in front of the linear coefficient is

not equal to certain special values: &;m/2, *=27/5,
+27/3, and =7. The cases#=0 and =7 correspond to

d=1.0, 6=m+5, andg=0.0001-0.0001.

Until we consider noise in Sec. VC, we assume that
=0. Then Eq.(40) can be transformed into the following
canonical form:

(1+p)fzal = 41242
argz,) + 0+ f,[z,/?

[Zn44]
argZ1)

+0(0?,q2Zp)
(41)

with f,, ©, and f, being real coefficients. Equatiof#1)
shows that the critical issue is the signfef A positive sign

pitchfork or transcritical and period-doubling bifurcations indicates a soft transition and a negative sign indicates a hard
and have already been considered in Secs. Ill and IV. Thifansition. As derived if22], f; = —ReQ*d") at the bifurca-

other nonallowed angle&*7/2,+2#/5,+27/3) correspond

to nongeneric cases which, unless special circumstances ap-
ply, are not expected to occur. When the above spetial

values are excluded, it can be sho{@2,23 that by means
of a coordinate transformation of the form

2
20=2F V120t ¥22aZh + 73(Zh),

(37

where y;, v,, andy; are complex numbers, all quadratic

terms can be eliminated from E@b) with x=0, yielding

4 — ’ 157257
z, . ,=\z,+d'|z}|*z)+q+rv,

+0(qg%,r?rz',qz ,pz'%,2'%), (38)

wherex=(1+p)e'? and
d= 272 o bt 2 ceid (39
A -1 P T N1 e td (39

Defining Z=z'+q/(1—\), and substituting into Eq(38)
cancelgy in lowest significant order. Thus, in termsafEq.
(38) becomes

Foi1=NZn+ A" [Z,|%2,+ 1 v+ O(q%, r2,rZ,q2,p222%).

tion valuex=¢€'?, or

%(1_2@ 0)872”’

f]_:R 1_eI0

ab|+ zblo* +cc* —Rede™'?).
(42)

The sign of the above expression determines whether the
transition is hard {;<0) or soft (f;>0).

Next we obtain an expression for the maximum burst am-
plitude for a soft transition in modél). We assume thdt;
is of order 1, i.e., we are not close to the borderline between
hard and soft transitions. Rewriting the radial part of &qd)
as

(Zos 1] = [Zo| = PZo| = F1[Z,]°+ O(0?,42Z0), (43

we see that, as in the pitchfork case, the maximum burst
amplitudeA for [Z] is

A= \p/f;.

This relation is true ifpA=f;A%>max@?ga,A%. Thus the
scaling range for Eq(44) is |g|<p<1, and, sincez=2z’
+0(2')?=%+0(Z%,q), in this range we haveA=A

=~ p/f,. Since our final result does not depend on the mag-

(44
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nitude ofq in the scaling range specified, the result appliesin 15 - - , ; ; -
the case of noise-induced bubbling as well. Figure 7 shows
the scaling of the maximum burst amplitude wgthExperi- 1l
mental data are plotted as dots. The solid curve is calculatec
from Eq. (44).

In the case of noise, we have a soft transitiofy i 0 and 8y
a hard transition iff ;<<0. In the case of a soft transition, by
arguments similar to the ones in previous sections, we have
A=/p/f; whenr?®<p<1.

B. Average interburst time: Mismatch

We now derive an expression for the average interburst |
time in the presence of mismatclg>0) and no noise r(
=0). Again we consider an orbit starting ax,)=(0,0

+0i) and use the new coordinates to eliminate the qua- % 20 21 22 2 2 25 2 2
dratic terms. Note that the coefficient in front of the cubic n(p)
term in the transformed coordinates is given by E39). As FIG. 8. This plot shows Im vs n(p), wheren(p) is given by

in the previous derivationéSecs. Il and 1, we make use Eqg.(46), for bubbling induced by a Hopf bifurcation with asymme-
of the fact that, in the case of a hard transition, whef  try for |g|<p<1. Parameter values age=1,b=1,c=1,d=2,p
grows to the point where the nonlinear terms become signifi=0.1, . .. 0.15,6= /5, andq=0.015. The experimental data are
cant, the nonlinearity pushéz,| to O(1) rapidly. Consider plotted as diamonds. The solid curve has slope In 2 predicted by Eq.
the linear terms in maf88), z,,1=Az,+q+0(Z3). We first (48

find the number of iterates it takes to escape starting at O.

Starting atz=0, thenth iterate of the linearized map i,

=[(1—A""Y)/(1—\)]g. The nonlinear term becomes sig- C. Average interburst time: Noise
nificant when, aftem iterates,|Z reaches the critical value We now consider the case where bubbling is induced by
z.=p/|f4|; thus we have the equation far noise, i.e.y >0, butq=0. According to Eq(41), for smallp

) and in the presence of noise, the evolution of the radial part

1-\"t _ b 45 of z, with x=0 is the same as the evolution gfin the
- 97 [f.] (45) pitchfork case with cubic nonlinearity with f; as the cubic
coefficient:
Solving the above equation, we fimd %o ol = (1 )2 — F1Z0 B 1 {0}, (49)
_ p(1—\)? . : I o ,
= ——In| (46)  The noise termi{v}, is the projection of noise in the direc-
2 /lal tion of z,, in the complex plane. Since the noise is distributed

uniformly within the unit circle{v,}, has a one-dimensional
Knowing the number of iterates it takes to escape assum- probability distribution on{—1,1] with probability distribu-
ing x, stays close to the fixed point, we use E85), N7 tion function given by 2/1—{v}2. This distribution has
~hyn, to derive the scaling witlp of the average interburst yariance of 1/4. We can analyze Eg9) in the same way as
time 7, in Sec. Il C, but withD = (1/2)r? Var({v,},). The 6 depen-
dence disappears from the final scaling due to the fact that
the distribution of noise is uniform within the unit circle.
(47) Our final results for Hopf bifurcation induced bubbling
transitions are summarized in Table IlI.

p(1—)\)32
fallal?

h\l

In 7~hn= I

Finally, using the approximation=(1+p)e'’=e'’, we ob-
tain the final scaling given in Table IlI: VI. FURTHER DISCUSSION OF THE NOISE-INDUCED
BUBBLING MECHANISM

p(1—e'’)?

W . (48) In this section we provide more insight into the nature of
1

two types of noise-induced bubbling: noise dominated and
drift dominated. Consider again the mé®). We define a
We numerically iterated the maj@) starting at a typical ir- critical valuey, such that fory>y, the nonlinear terms be-
rational x and z=0+0i and measured the interburst time. come dominant and the burst quickly follows. A burst occurs
Figure 8 shows the result of numerical experimefd®- whenx comes close to the fixed poirt=0 and stays there
monds; In 7is plotted vsn(p), wheren(p) is given in terms  for a large number of iterates The probability per iterate of

of p by Eq. (48). The solid line has the predicted slopg  that event is of order exp(hn). After x has entered the
=In 2 and is consistent with the data. required vicinity of the fixed point, the linear coefficient

|I’] T h”n I
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cos(2mX)+p=1+p immediately starts drivingy away from To summarize, in thi.s work we haV(_a pres_ented a unifigd
the invariant manifold. At the time& enters the region near treatment of the bubbling transitions involving all generic

x=0, y will typically be of the order of the size of the noise, types of bifurcation: pitchfork, transcritical, period doubling,
y~r. Thus a burst will occur ify,~rexpfp), or n  and Hopf. We have theoretically derived results for scalings

~p~tIn(y./r)~p~*. We call this scenario drift-dominated ©f the average interburst time and the maximum burst ampli-
bubbling. The probability per iterate of initiating a burst by tude with the normal parameter as well as condi-
this mechanism is of order ex—ph”/p) and goes to zero ex- tions for hard and-SOft bubbllng tranSIFlons in the a.b(-)VG three
ponentially ag comes close to the critical valye=0. This  cases for both noise- and mismatch-induced bubbling.
would imply that bursts do not happen whpe-0, but the

experimental results suggest otherwise. Thus we consider an- ACKNOWLEDGMENTS

other possible route for a burst that becomes important when
p sufficiently small. We call this second mechanism noise
dominated bubbling. In the noise-dominated cpse close
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may occur ifx comes close to the fixed poirt=0 and stays
there for n iterates wheren is in the rangey./r=n
=(y./r)2. With p neglected, the probability of reachiryg
in n iterates is of order exXp-(y2/nr?)]. This the probability APPENDIX

of a burst in this case is of order gxp(y2/nr?)]exp(—nhy),

which is maximized whem~y./r. This suggests that when  In this Appendix we provide details of the solution of Eq.
such a burst occurs the noise behawelserentlyovern iter-  (20) subject to the boundary conditio +y.,s)=0. We
ates pushiny on average in the same direction away fromlook for an approximate solution in terms of a perturbation
the invariant manifold. Since we determinggdfor a coher-  expansionP(y,s) = Py(y,s) + pP1(y,s) + O(p?). First, we

ent perturbation to be proportional td" [see Eq(12) and i ; ; .
discussion in Sec. Il B the probability of the burst becomes setp=0 in Eq. (20) to obtain an equation foPo(y.s):

of order expE-hr~?%). Thus the average interburst time o
is of order PPy —
DTT_SP0:_5(y)' (Al)
y
r~min(exp(h,r*~?'?) exgh, /p)). (50
The solution of this equation satisfying the boundary condi-
tions is
Equation (50) suggests that the noise-induced bursting
mechanism prevails ifp?(“"Y/|r|<1, while the drift- .
induced bursting mechanism prevailspif/ ("~ 1/|r|> 1. Po(y.s)= sinH (yc— |y|) Vs/\D] (A2)

> 2 JDscostiyVs/VD)

Now since we knowPy(y,s), we can deduce the equation
The above discussions have assumed that there is no agr p,(y,s):

tractor away from the invariant manifold. In the situation

where there is an attractor away from the invariant manifold,

our analytical results derived in Secs. IlI-V still apply, but

the meaning ofr is different. Specifically, for the case that ay

we previously referred to as a hard transitiony =0 now

yields a riddled basin attractor on the invariant manifold i ) _ .

[4,10]. Forg, r+0 this attractor is destroyed and convertedS°!Ving the above equation subject to boundary conditions

to a chaotic transient whose mean lifetime is given by Pi(*Y.,s)=0 and ¢P;/dy),_o=0, we obtain the expres-

(Tables 1-11)). sion for P4(y,s):

VIl. CONCLUSION

PP, Py — —

_ [1-(s/D)|y[*+ Vs/Dytanh(ys/Dyc) IsinH ys/D(|y| —yo) |+ VS/D(yc— |yl costi yS/D(|y| —yo)]
8 costi\/s/Dy,) '

Pa(y,s)
(A4)

Upon settings= h; and substitution of the expressions ﬁ(y,s) andﬁl(y,s) into Eq.(21) and integration ovey we obtain
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1+ pyZ/(4D) ~ [ pyc/(4\hD)Jtant \hyy./ VD)
coshihyyc/yD) '
The quantity Vhyy./\VD in Eq. (A5) is large, which allows us to make the approximations cgBhy(./\D)

=exd Vh)y./\VD]/2 and tanh{h,y./\{D)=1, and neglect thg./(4\h,D) term compared ty?/(4D), to obtain the final
scaling given in Eq(22).
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